If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+8k=19
We move all terms to the left:
3k^2+8k-(19)=0
a = 3; b = 8; c = -19;
Δ = b2-4ac
Δ = 82-4·3·(-19)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{73}}{2*3}=\frac{-8-2\sqrt{73}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{73}}{2*3}=\frac{-8+2\sqrt{73}}{6} $
| 6u-30=0 | | 4x=4.0 | | 3(2x-4)-8x=74 | | 6n^2=3 | | 2(2x+3)-2x=12 | | 3.14x2.5= | | -1+3x=-4+2x | | V^2=10—3v | | V^2=10–3v | | 5^x+(1/5)^2x-3=0 | | 6=3u-u | | K^2=56+k | | 10(-12x+18)=-1020 | | 18=y+8y | | 4(x+5)-17=-21 | | X²-6x-19=0 | | 7x–5=9x–15 | | 18-7x=61 | | 2d+3(d-1)=47 | | X^2=-32–12x | | 7p+3=7W-5 | | 12=-4=9-+p | | 12*3x+1=15*2+2x | | 4(x+10)+2(-x+4)=-2 | | (3y+36)^2=0 | | -5(r+2)=-99 | | P^2=p+30 | | 3x+4(-2x-1)=-19 | | 1/2x+1=3x-9 | | 2/3-3/2x+1/3x+4=0 | | 9x-36x=3x | | 3x+4(3x-1)=-49 |